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Nuclear Lipids: New Functions for Old Molecules?
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Abstract It is becoming increasingly evident that stimulation of nuclear lipid metabolism plays a central role in
many signal transduction pathways that ultimately result in various cell responses including proliferation and
differentiation. Nuclear lipid metabolism seems to be at least as complex as that existing at the plasma membrane.
However, a distinctive feature of nuclear lipid biochemical pathways is their operational independence from their cell
periphery counterparts. Although initially it was thought that nuclear lipids would serve as a source for second messengers,
recent evidence points to the likelihood that lipids present in the nucleus also fulfil other roles. The aim of this review is to
highlight the most intriguing advances made in the field over the last year, such as the production of new probes for the in
situ mapping of nuclear phosphoinositides, the identification of two sources for nuclear diacylglycerol production, the
emerging details about the peculiar regulation of nuclear phosphoinositide synthesizing enzymes, and the distinct
possibility that nuclear lipids are involved in processes such as chromatin organization and pre-mRNA splicing. J. Cell.
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In response to a plethora of stimuli bioactive
lipid metabolites are generated in a receptor-
mediated manner at the plasma membrane.
These lipid molecules activate signaling path-
ways that ultimately may elicit nuclear res-
ponses [Divecha and Irvine, 1995]. However,
over the last decade abundant evidence has
accumulated highlighting that the nucleus is
the site for an active autonomous lipid metabo-
lism, which is regulated independently from
that of the plasma membrane [D’Santos et al.,
2000; Cocco et al., 2001a; Martelli et al., 2001].
Indeed, many agonists that stimulate the mem-
brane metabolism do not activate the one pre-
sent in the nucleus and vice versa. In other
cases, if an agonist stimulates both, it does so
in a temporally distinct manner. Since there
are lipids that resist washing of nuclei with
detergents, it should be assumed that these
molecules are not components of the nuclear
envelope, but are actually within the nucleus,
most likely not in a bilayer membrane but
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instead forming proteolipid complexes with
proteins that remain to be identified [Divecha
et al., 2000]. Indeed, several nuclear proteins
possess phosphoinositide (PI)-binding sequen-
ces [Cocco et al., 2001a]. A wealth of results
supports the hypothesis that nuclear lipids
generate second messengers [Divecha et al.,
2000; Martelli et al., 2001]. Nevertheless, recent
experimental evidence indicates that nuclear
lipids might be involved in other functions ran-
ging from chromatin remodelling to pre-mRNA
splicing [Osborne et al.,, 2001; Rando et al.,
2002]. This article discusses the most new fin-
dings about the localization of nuclear lipids,
the source of lipid second messengers in the
nucleus, the regulation of lipid-synthesizing
enzymes within this highly peculiar organelle,
and new possible roles played by nuclear lipid
molecules.

NEW PROBES FOR IN SITU
VISUALIZATION OF NUCLEAR LIPIDS

Although the presence of lipids in isolated
nuclei has been reported since the 1960
[reviewed in Cocco et al., 2001b], these findings
were generally met with scepticism and disbe-
lief and dismissed as being the result of cyto-
plasmic contamination [Divecha et al., 2000;
Cocco et al., 2001a]. This was rightly so, because
any isolated intracellular organelle is always
likely to suffer from different degree of contam-
ination with other organelles. However, the
availability of complementary DNAs and anti-
body probes to the enzymes that modify these
lipids allowed for the conclusion that they are
unequivocally localized in the nucleus using
techniques that do not require organelle iso-
lation, such as immunofluorescent staining.
This put the issue of contamination to rest, at
least as far as enzymes were concerned, and
opened up new investigation into putative
nuclear targets [Divecha et al., 2000; Cocco
et al., 2001a]. Nevertheless, the contention was
still open surrounding the exact localization of
nuclear lipids. Very recently, however, antibo-
dies have been generated that are specific for
PIs and suitable for immunocytochemical stain-
ing [e.g., Prestwich et al., 2002]. One of these
antibodies allowed to map phosphatidylinositol
(4,5)-bisphosphate (PtdIns(4,5)P5) to the speckle
domains of the nucleus that contain components
of both the transcriptional and pre-mRNA pro-
cessing machinery, including RNA polymerase

IT and the splicing factor SC-35 [Osborne et al.,
2001]. Furthermore, the use of the same anti-
body revealed the presence of PtdIns(4,5)P5 in
the nucleoplasm. Treatment with RNase, but
not with DNase, substantially reduced immu-
nostaining, suggesting the existence of an
interaction between PtdIns(4,5)P5 and RNA.
Immunoprecipitation experiments showed an
association between PtdIns(4,5)P; and the
hyperphosphorylated form of RNA polymerase
II as well as with Sm proteins, but not with
hnRNP Al.

Another elegant approach which was recently
employed to localize the subcellular distribution
of PtdIns(4,5)P, entailed the use of the specific
lipid-binding domains known as pleckstrin hom-
ology (PH). These domains characterize several
proteins that interact with PIs [Lemmon and
Ferguson, 2000]. The PH domain of PI-specific
phospholipase C (PI-PLC) §; was fused to
glutathione-S-transferase (GST) in an on-sec-
tion electron microscopy labeling approach to
avoid transfection procedures [Watt et al.,
2002]. These authors reported that the PI-PLC
8:PH-GST probe, besides labeling the plasma
membrane and the intracellular membranes,
was also detected in electron-dense structures
within the nucleus. Quantitative analysis de-
monstrated that nuclear labeling was 17-21%
of total. This new technique offers some advan-
tages over the method, which requires the use
PH domains tagged with green fluorescent
protein (GFP) in combination with confocal
microscopy. The PH-GFP method has a limited
resolution (200 nm) and, more importantly, uses
the overexpression of PH domains in the cytosol,
which may have deleterious effects on cell func-
tion either by sequestering PIs or by promoting
functionally important protein—protein inter-
actions. However, the exploitation of GFP-
tagged probes allows for their detection in
living, unfixed cells [Balla et al., 2000].

THERE ARE TWO SOURCES FOR NUCLEAR
DIACYLGLYCEROL (DAG)

The best documented lipid second messenger
in the nucleus is DAG, which can derive from
either PIs or phosphatidylcholine (PC) [Divecha
et al., 2000; Neri et al., 2002a]. In case of PIs, a
PI-PLC hydrolyzes PtdIns(4,5)P; to yield DAG
and inositol 1,4,5-trisphosphate. When DAG
derives from PC, there is first the activation
of a phospholipase D (PLD) which produces
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phosphatidic acid (PA) and choline from PC.
Then, a PA phosphohydrolase synthesizes DAG
(Fig. 1). What is the role of this nuclear DAG?
Several papers have related the generation of
nuclear DAG with the attraction to the nucleus
of DAG-dependent protein kinase C (PKC)
isoforms. This has been demonstrated in IIC9
cells stimulated with a-thrombin [Jarpe et al.,
1994], in Swiss 3T3 cells treated with insulin-
like growth factor-I (IGF-I) [Neri et al., 1998]
and during the Go/M phase of the cell cycle of
HL-60 [Sun et al.,, 1997] or U-937 human
leukemia cells [Deacon et al., 2002]. In these
experimental models, the source of nuclear
DAG could be either PIs or PC. The existence
of two separate pools of nuclear DAG suggested
that this lipid second messenger might be
involved in distinct pathways that lead to dif-
ferent cell responses. However, a conclusive
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demonstration that in the same cell line differ-
ent stimuli activate distinct phospholipases
present in the nucleus and that this differential
activation was responsible for attracting to the
organelle specific, DAG-dependent PKC iso-
forms, was lacking. We very recently provided
evidence that, in the HL-60 cells, a rise in PI-
derived DAG levels occurs in response to a
proliferating stimulus represented by IGF-I
which activates a nuclear PI-PLCB1. This in-
crease in DAG mass is responsible for PKC-f;
translocation to the nucleus [Neri et al., 2002b].
It is still unclear how nuclear PI-PLCp1 is
activated in response to IGF-I stimulation of
HL-60 cells (Fig. 1). However, in Swiss 3T3 cells
treated with IGF-I, PI-PLCp1 is phosphorylated
and activated by p42/44 MAP kinase which
translocates from cytoplasm to nucleus
[Xu et al., 2001]. In contrast, in response to

DMSO

PtdIns(4,5)P, ¢

'
AN ...

\4

TARGETS (?)

PROLIFERATION

CELL NUCLEUS

Fig. 1. In HL-60 leukemia cells treatment with IGF-I leads to
activation of a nuclear PI-PLCB1. It is still unclear how this
activation is achieved, but it might be through phosphorylation
by p42/44 MAP kinase, in analogy with Swiss 3T3 cells. Nuclear
PI-PLCB1 hydrolyzes Ptdins(4,5)P, yielding DAG. This DAG
attracts to the nucleus phosphorylated PKC-p;, isozyme which
conceivably phosphorylates substrates that are important for cell
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proliferation. If HL-60 cells are exposed to DMSO, a 90 kDa PLD
traslocates to the nucleus to generate PA from PC. PA is then
converted to DAG by a PA phosphohydrolase. PC-derived DAG
is responsible for nuclear translocation of phosphorylated PKC-a
which probably targets proteins critical for differentiation along
the granulocytic lineage.
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dimethylsulfoxide (DMSO, i.e., a stimulus to-
wards granulocytic differentiation), we observ-
ed in HL-60 cells a rise in nuclear DAG levels
derived from PC and a translocation of PKC-a to
the nucleus. How is this DAG generated? We
found that DMSO causes migration to the
nucleus of a 90 kDa PLD distinct from PLD1
or PLD2 (Fig. 1). The presence of this type of
PLD has also been reported in granulocytes
[Horn et al., 2001]. The mechanisms through
which PLD translocation to the nucleus takes
place are at presently completely unknown.
There are other experimental models, however,
in which DMSO was demonstrated to be able to
activate a PLD activity [see Neri et al., 2002b,
and references therein]. Therefore, we can now
postulate the existence in the cell nucleus of two
independently regulated DAG sources, related
to distinct stimuli and capable of recruiting
to the nucleus different PKC isozymes. DAG
derived from Pls is polyunsaturated, whereas
DAG produced through the PLD pathway is
mono-unsaturated and saturated [Neri et al.,
2002a]. At present, great controversy surrounds
the issue of whether or not both forms of DAG
can activate PKC isoforms [Deacon et al., 2002].
Our results seem to indicate that it is the dif-
ferent fatty acid composition of DAG the factor
which drives to the nucleus distinct PKC iso-
forms, even though further experiments are
necessary to conclusively address this issue. In
any case, our findings are in complete agree-
ment with those of others who also showed
nuclear translocation of PKC-By; isoform to be
dependent on PI-derived DAG [Sun et al., 1997;
Deacon et al., 2002]. An unresolved issue is how
PKC isoforms located in the cytoplasm “sense”
DAG generated in the nucleus. It was proposed
that nuclear DAG could “trap” PKC during a
transient visit to the nucleus [Divecha et al.,
1991]. However, this would entail a rapid and
continuous cycling of PKC in and out of the
nucleus, and therefore seems unlikely because a
massive migration of PKC isozymes to the nu-
clear compartment usually takes place in a
short time after stimulation [e.g., Neri et al.,
1998]. Since targeting of PKC isozymes to
distinct sites of action is crucial for their role,
it appears very interesting that nuclear DAG
derived from different lipid precursors is differ-
ent with respect to not only its structure but also
its intranuclear localization [D’Santos et al.,
1999; Jones et al., 2002]. This may well re-
present a mechanism for the distinct spatial and

temporal activation of specific PKC isoforms
within the nucleus. In this connection, however,
it should be emphasized that the interactions
between lipid second messengers and PKC can-
not fully explain the fine regulation of this
peculiar protein kinase in the nuclear compart-
ment. Because there usually are multiple PKC
isozymes within a cell, the differential subcel-
lular localization has been proposed to explain
the specificity of different isoforms. The locali-
zation appears to be mediated in part by as-
sociation of each PKC isozyme with specific
anchoring proteins, referred to as PKC-binding
proteins [Mochly-Rosen and Gordon, 1998;
Jaken and Parker, 2000]. The identification
and characterization of nuclear PKC-binding
proteins has only recently begun [Martelli et al.,
2002; Rosenberger et al., 2002; Tabellini et al.,
2002], but useful information will hopefully be
collected in a short amount of time.

THE REGULATION
OF NUCLEAR PHOSPHOINOSITIDE
SYNTHESIZING ENZYMES

Phosphoinositide 3-kinases (PI3Ks) are a
family of enzymes, subdivided in three classes
(I, I1, and III), that synthesize 3-phosphorylat-
ed phosphoinositides, such as phosphatidy-
linositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3)
[Vanhaesebroeck and Waterfield, 1999;
Vanhaesebroeck et al., 2001]. These peculiar
inositides are not substrate for any known
phospholipases but act as second messengers
by themselves, impinging on a plethora of cel-
lular functions [Vanhaesebroeck et al., 2001].
Increases in nuclear class IA PI3K protein and
activity have been reported in, for example,
nerve growth factor (NGF)-stimulated PC12
cells [Neri et al., 1999]. Nuclear PtdIns(3,4,5)P5
seems to be the driving force that attracts to the
nucleus PKC-{, in response to NGF stimulation
of PC12 cells [Neri et al., 1999; White et al.,
2002] or C2-ceramide treatment of rat hepato-
cytes [Calcerrada et al., 2002]. Activation of
nuclear class IA PISK is controlled by PIKE, a
nuclear GTPase that enhances PI3K activity
[Ye et al., 2000]. This activation by PIKE
requires the p85 regulatory subunit of PI3SK,
and is thus different from the Ras-activation of
PI3K that occurs at the plasma membrane
through the pl110 catalytic subunit of PI3K
[Vanhaesebroeck et al., 2001]. Intriguing data
have emerged very recently, demonstrating that
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the SH3 domain of nuclear PI-PLCy1 acts as
a guanine nucleotide exchange factor (GEF) of
PIKE [Ye et al., 2002]. These findings account
for the earlier surprising observation that the
catalytic domain of PI-PLCy1 is not required for
amitogenic activity, whereas the SH3 domain is
essential [Bae et al., 1998]. Thus, the regulation
of nuclear PI3K remains an exciting and en-
tirely new area for exploration.

Another nuclear enzyme involved in phos-
phoinositide synthesis that appears to have a
peculiar regulation is type I phosphatidylinosi-
tol phosphate kinase (PIP kinase). This enzyme
phosphorylates phosphatidylinositol (4) phos-
phate on the 5 position of the inositol ring,
yielding PtdIns(4,5)P, [Clarke et al., 2001].
Recent evidence has shown that the retinoblas-
toma susceptibility gene product (pRB) inter-
acts both in vitro and in vivo with type I PIP
kinase and this interaction stimulates the
kinase activity in an in vitro assay [Divecha
et al., 2002]. Since the interaction was blocked
by the large T antigen (LTA), the authors took
advantage of cell lines overexpressing a tem-
perature-sensitive mutant of LTA. At 32°C this
mutant was stable in the nucleus and repres-
sed pRB function, whereas increasing tem-
perature to 39°C led to its degradation. It was
found that at 32°C there was a fourfold increase
in the mass of nuclear PtdIns(4,5)P5 as com-
pared to the levels at 39°C. No changes in the
mass of PtdIns(4,5)P, at the plasma mem-
brane was measured at the two temperatures.
Therefore, the data strongly suggested that, in
vivo, pRB is capable of regulating the levels of
PtdIns(4,5)P; in the nucleus through its inter-
action with type I PIP kinase.

ADDITIONAL ROLES FOR NUCLEAR LIPIDS

There is no doubt that nuclear lipids are a
source for second messengers. However, there
are promising data regarding other functions of
PtdIns(4,5)P5 in the nucleus. PtdIns(4,5)P5 can
influence chromatin structure by facilitating
the interaction between the nuclear matrix and
the chromatin remodeling complex referred to
as BAF [Zhao et al., 1998]. What are the mole-
cular mechanisms that regulate such an inter-
action? Recent findings have shown that
PtdIns(4,5)P, enhances actin binding by the
BAF complex [Rando et al., 2002]. Since there
are reports indicating that actin is a nuclear
matrix protein [reviewed in Pederson, 2000],

PtdIns(4,5)P5 is an attractive candidate for a
matrix localization signal for the BAF complex.
The BAF complex is composed of several pro-
teins including actin, BAF53 and Brgl. A full
BAF complex was required for PtdIns(4,5)P,
binding and stabilization of actin filaments.
In addition, it was found that Brgl interacted
with actin using at least two separate domains
and PtdIns(4,5)P; could selectively displace
actin from one of these sites, thus relieving
capping of BAF53 and actin by the Brgl C
terminus [Rando et al., 2002]. However, the
physiological relevance of this targeting mech-
anism of actin to the nuclear matrix remains to
be explored.

Another exciting possibility has emerged for
anintranuclear function of PtdIns(4,5)P,. Given
that PtdIns(4,5)P5 is localized in the speckle
domains of the nucleus [Osborne et al., 2001]
it might be involved in pre-mRNA splicing.
Indeed, if PtdIns(4,5)P; was removed by immu-
noprecipitation from HeLa cell nuclear extracts,
a specific inhibition of pre-mRNA splicing in the
extracts ensued [Osborne et al., 2001]. How-
ever, it remains to be established exactly what
PtdIns(4,5)P; is interacting with in this context
(most likely proteins or RNA) and thus whether
its involvement in pre-mRNA splicing is direct
or indirect with some components of the nuclear
matrix (as discussed previously).

It might be that PtdIns(4,5)P5 binds nuclear
matrix proteins and serves as a structural in-
terface between the enzymatic core of the sp-
liceosome and the matrix itself. In any case,
what is slowly beginning to emerge is that nu-
clear PtdIns(4,5)P5 does not have just one func-
tion (i.e., generation of second messengers), in
analogy with the multiple roles this lipid plays
in the cytoplasm [Hinchliffe et al., 1998].

CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

The availability of various new tools for
phospholipid research has resulted in several
important discoveries in the field of nuclear
lipids, particularly over the last five years.
Hopefully, the pace of this research will accel-
erate with the advent of even better tools to
study individual phospholipids.

In this connection, every effort should be
made to identify the proteins nuclear lipids
interact with, because this information will be
of great help in understanding the functions of
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these lipids. The initial identification should
take advantage of the straightforward overlay
assays that have been developed recently [e.g.,
Dowler et al., 2000; reviewed in Drgbak and
Heras, 2002] coupled to proteome analysis.
Furthermore, these experiments should clarify
what is the physicochemical form of intra-
nuclear lipids, an issue which is poorly under-
stood at present. Another area likely to receive
considerable attention is represented by 3-
phosphorylated inositol lipids, because they are
now emerging as possible major players in
nuclear signaling, but it may not be only
PtdIns(3,4,5)P3 that should be considered for a
nuclear function. Indeed, phosphatidylinositol
(3,4)-bisphosphate (PtdIns(3,4)Ps) has been de-
tected in nuclei in vivo by means of a specific
monoclonal antibody [Yokogawa et al., 2000],
and the enzyme which preferentially synthe-
sizes PtdIns(3,4)P2, class II PISK C2a, has been
immunolocalized to the nuclear speckles of
Hela cells [Didichenko and Thelen, 2001]. The
results briefly reviewed here have set new st-
ages for nuclear lipid molecules; the task at
hand is to confirm their physiological relevance,
to dissect the complexities of the various nuclear
signaling pathways and, ultimately, to eluci-
date the downstream targets. These and other
future investigations will certainly highlight
the multiple emerging roles played by lipids
in the extremely complex microenvironment
of the nucleus.
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